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Abstract—Maximal biclique enumeration is a fundamental
problem in bipartite graph data analysis. Existing biclique
enumeration methods mainly focus on non-attributed bipartite
graphs and also ignore the fairness of graph attributes. In this
paper, we introduce the concept of fairness into the biclique model
for the first time and study the problem of fairness-aware biclique
enumeration. Specifically, we propose two fairness-aware biclique
models, called single-side fair biclique and bi-side fair biclique re-
spectively. To efficiently enumerate all single-side fair bicliques,
we first present two non-trivial pruning techniques, called fair
α-β core pruning and colorful fair α-β core pruning, to reduce
the graph size without losing accuracy. Then, we develop a
branch and bound algorithm, called FairBCEM, to enumerate
all single-side fair bicliques on the reduced bipartite graph. To
further improve the efficiency, we propose an efficient branch
and bound algorithm with a carefully-designed combinatorial
enumeration technique. Note that all of our techniques can also
be extended to enumerate all bi-side fair bicliques. We also
extend the two fairness-aware biclique models by constraining
the ratio of the number of vertices of each attribute to the
total number of vertices and present corresponding enumeration
algorithms. Extensive experimental results on five large real-
world datasets demonstrate our methods’ efficiency, effectiveness,
and scalability.

I. INTRODUCTION

A bipartite graph G(U, V,E) contains two disjoint vertex
sets U and V and one edge set E in which each edge links a
node in U and a node in V . Many real-world networks, such as
online user-item networks [8], [28], [30], [35], [43] and gene
co-expression networks [7], [9], [37], [41] can be modeled as
bipartite graphs. Recently, the problems of analysis of bipartite
graphs have attracted much attention due to numerous real-
world applications, such as maximal biclique enumeration [1],
[6], [17], [41], butterfly counting [24], [29], [31], [42], and
maximum biclique search [5], [18], [22], [34].

In recent years, the concept of fairness has also been widely
investigated in data analysis related areas [10], [11], [13], [27].
Many existing studies reveal that a biased machine learning
model may result in discrimination upon a discrimination
group, such as the gender bias and the racial bias [3], [16],
[26], [39]. Various methods (e.g., group fairness and individual
fairness [4], [25], [27], etc.) are proposed to tackle this prob-
lem. Despite their effectiveness in data analysis applications,
the fairness in graph data analysis [21] is still under-explored.
A notable example is that Pan et al. proposed two fairness-
aware maximal clique models to find fair communities in
attributed graphs [21]. Their models, however, are mainly
tailored for traditional attributed graphs, and they cannot be
directly generalized to other types of graphs, such as bipartite
graphs studied in this paper.

In this work, we focus mainly on attributed bipartite graphs,
motivated by the fact that many real-life graphs, such as online
customer-product networks, can be modeled as attributed
bipartite graphs. We introduce the concept of fairness into the
classic biclique model and investigate the problem of mining
fairness-aware bicliques on attributed bipartite graphs. Here a
biclique is a subgraph of the bipartite graph in which every pair
of nodes belonging to two different sides has an edge. Note
that nodes at the upper side and lower side of the attributed
bipartite graph are often with different types of attributes.
The fairness property can be defined on one side of nodes,
and also can be defined on two sides of nodes. Therefore,
we propose two new models to characterize the fairness of
bicliques in bipartite graphs called single-side fair biclique and

bi-side fair biclique respectively. A single-side fair biclique is
a biclique that requires one side nodes satisfying the fairness
property and also it is a maximal subgraph satisfying such a
property. That is, the number of vertices for each attribute is no
less than a threshold β and the maximum difference between
the number of vertices of every attribute is no greater than a
threshold δ. Similarly, a bi-side fair biclique is a biclique that
guarantees fairness on both sides, and also it is the maximal
subgraph that meets such a property. In a bi-side fair biclique,
the number of vertices in the upper side and the lower side for
each attribute is no less than the thresholds α and β, and the
maximum difference between the number of vertices of every
attribute is no greater than a threshold δ. Notably, both single-
side fair biclique and bi-side fair biclique can be extended to
the proportion fair biclique models by introducing a fairness
ratio θ. In particular, the threshold θ requires that on the fair
side, the ratio of the number of vertices of each attribute to
the total number of vertices is no less than θ.

Mining fair bicliques in bipartite graphs has a variety of
applications. For instance, in scientific collaboration networks
(e.g., DBLP), we may wish to find a team of experts that
includes a similar number of junior and senior experts and
also with different research areas. Such teams can be identi-
fied by mining the bi-side fair biclique in author-publication
networks, as the bi-side fair biclique can ensure the team
contains a similar number of junior and senior researchers
and also with different research areas. In job recommendation
systems (e.g., Jobs), there may exist nationality bias. That is,
foreigners may be recommended for less popular jobs even if
they have a better degree and working experience. The same
problem lies in movie recommendation systems (e.g., Movies),
in which exposure bias exists. The intuition is that already
popular movies typically get more recommendation chances
than relatively new movies even if they are of equal mass.
To eliminate the biases, we can mine one-side fair bicliques
by defining the fairness on the job side and movie side, to
ensure the recommendation results are not nationality or time
sensitive.

Although the practical significance of our fair biclique
models, there are no existing solutions that can be used to
mine all single-side fair bicliques or bi-side fair bicliques in
bipartite graphs. Moreover, we show that the problem of enu-
merating all single-side fair bicliques or bi-side fair bicliques
on bipartite graphs is NP-hard. To solve this problems, we first
propose a branch and bound algorithm, called FairBCEM, with
two carefully-designed pruning techniques to enumerate all
single-side fair bicliques. To further improve the efficiency, we
propose a novel FairBCEM++ algorithm which first enumer-
ates all maximal bicliques and then uses a carefully-designed
combinatorial enumeration technique to enumerate all results
in the set of all maximal bicliques, instead of in the original
bipartite graph. We show that all our techniques can also
be extended to solve the bi-side fair biclique enumeration
problem. To summarize, we make the following contributions.
New models. We propose a single-side fair biclique and

a bi-side fair biclique models to characterize the fairness
of cohesive bipartite subgraphs. Additionally, we also pro-
pose proportion single-side fair biclique and proportion bi-
side fair biclique models which take account of the ratio of
the number of vertices of each attribute to the total number
of vertices. To the best of our knowledge, we are the first
to introduce the concept of fairness into bipartite graphs for
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biclique mining tasks.
Novel algorithms. To enumerate all single-side fair bi-

cliques, we first propose a fair α-β core pruning technique
to prune unpromising nodes in the original bipartite graph.
Then, we develop a pruning technique, called colorful α-
β core pruning, by first constructing a 2-hop graph on the
fair-side vertices and then applying the colorful core pruning
technique to reduce the fair-side vertices. A branch and bound
algorithm, namely, FairBCEM, is proposed to enumerate all
single-side fair bicliques. To further boost the performance, we
develop a new algorithm called FairBCEM++ which makes use
of maximal bicliques as the candidates, and then enumerates
all single-side fair bicliques in such candidates by using a
carefully-devised combinatorial enumeration technique. Be-
sides, we also extend the proposed pruning techniques and
the enumeration algorithms to handle the bi-side fair bi-
clique enumeration problem, which results in a basic enu-
meration algorithm BFairBCEM and an improved algorithm
BFairBCEM++. Additionally, we also present the algorithms,
called FairBCEMPro++ and BFairBCEMPro++, to enumerate
all proportion single-side fair bicliques and proportion bi-
side fair bicliques.

Extensive experiments. We conduct extensive experiments
to evaluate the efficiency and effectiveness of our algorithms
using five real-world networks. The results show that: (1) the
pruning techniques for single-side fair biclique enumeration
and bi-side fair biclique enumeration can significantly prune
unpromising vertices; (2) for single-side fair biclique enumer-
ation, FairBCEM++ is at least two orders of magnitude faster
than that FairBCEM; (3) for bi-side fair biclique enumeration,
BFairBCEM++ is around 3-100 times faster than BFairBCEM;
(4) both our improved algorithms can process a large bipartite
graph with 7,577,304 nodes and 12,282,059 edges. In addition,
we conduct three case studies on DBLP, Jobs and Movies, to
evaluate the effectiveness of our solutions. The results show
that both single-side fair biclique and bi-side fair biclique can
find meaningful and interesting fair communities in DBLP and
fair recommendation results in Jobs and Movies. For repro-
ducibility purposes, the source code of this paper is released
at https://github.com/Heisenberg-Yin/fairnesss-biclique.

II. PRELIMINARIES

Let G = (U, V,E,A) be an undirected, unweighted, and
attributed bipartite graph, where U(G) and V (G) are two
disjoint vertex sets, and E(G) ⊆ U(G) × V (G) denotes
the edge set of G. Generally, we call the vertex sets U(G)
and V (G) the upper side and lower side of G, respectively.
A(G) = {AU , AV } is the attribute set of G in which AU is
the attribute of vertices in U(G) and AV is that of vertices
in V (G). For an arbitrary vertex u, we use u.val to indicate
the value of its attribute. Let A(U) be the set of all attribute
values of AU , i.e., A(U) = {u.val|u ∈ U(G)}. Analogously,
we denote A(V ) = {u.val|u ∈ V (G)}. The cardinalities of
A(U) and A(V ) are AU

n and AV
n , respectively. We mainly

focus on the case of two-dimensional attribute for each side of
G, i.e., AU

n = AV
n = 2. Without loss of generality, we denote

A(U) = {aUi |0 ≤ i < AU
n } and A(V ) = {aVi |0 ≤ i < AV

n }.
The set of neighbors of vertex u in graph G is denoted as
N(u,G) = {v|(u, v) ∈ E(G)}, and the degree of u in G is
represented as D(u,G) = |N(u,G)|. Given a vertex set S,
we use N(S) = {v|v ∈ N(u), ∀u ∈ S} to indicate the set of
neighbors of S. The number of vertices with attribute value
a∗i in the set S is Sa∗

i
= {v|v.val = a∗i } where the symbol

“∗” is either U or V . We omit the symbol G in the above
notations when the context is clear.

Definition 1: (Biclique) Given an bipartite graph G(U, V,E),
a subgraph C is a biclique if: (1) E(C) = U(C)× V (C); (2)
U(C) ⊆ U(G); (3) V (C) ⊆ V (G).

Definition 2: (Maximal biclique) Given a bipartite graph
G(U, V,E) and a subgraph C, C is a maximal biclique if:
(1) C is a biclique; (2) there is no other biclique C ′ ⊃ C
satisfies (1).

Below, we introduce two novel fairness-aware biclique
models, namely, Single-Side Fair BiClique (SSFBC) and Bi-
Side Fair BiClique (BSFBC). Without losing generality, we
consider V as the fair side in the SSFBC model and both
U and V as the fair sides in BSFBC.

Definition 3: (Single-side fair biclique) Given an attributed
bipartite graph G(U, V,E,A) and three integers α, β, δ, a
biclique C(U, V,E,A) of G is a single-side fair biclique if
(1) |C(U)| ≥ α; (2) ∀aVi ∈ A(V ), |C(V )aV

i
| ≥ β and

∀aVi , aVj ∈ A(V ), ||C(V )aV
i
| − |C(V )aV

j
|| ≤ δ; (3) there is

no biclique C ′ ⊃ C satisfying (1) and (2).
Definition 4: (Bi-side fair biclique) Given an attributed bi-

partite graph G(U, V,E,A) and three integers α, β, δ, a bi-
clique C(U, V,E,A) of G is a bi-side fair biclique if (1)
∀aUi ∈ A(U), |C(U)aU

i
| ≥ α and ∀aUi , aUj ∈ A(U),

||C(U)aU
i
|− |C(U)aU

j
|| ≤ δ; (2) ∀aVi ∈ A(V ), |C(V )aV

i
| ≥ β

and ∀aVi , aVj ∈ A(V ), ||C(V )aV
i
| − |C(V )aV

j
|| ≤ δ; (3) there

is no biclique C ′ ⊃ C satisfying (1) and (2).
Example 1: Consider an attributed bipartite graph G =

(U, V,E,A) in Fig. 1(a). For the upper side U(G), the values
of attribute AU are represented as a and b in a square,
respectively. And the attribute values of AV are a and b in
a circle for the lower side V (G). Suppose that α = 1, β = 2
and δ = 1. By Definition 3, the subgraph CS induced by the
vertex set {u3, u4, v2, v4, v6, v9} is a SSFBC of G and the
subgraph CB induced by {u3, u4, v2, v4, v6, v9} is a BSFBC.
Clearly, CB is a subgraph of CS , which means that a BSFBC
must be contained in SSFBCs. □

In addition, fairness considers not only the number
of vertices with each attribute but also the ratio of
the number of vertices of each attribute to the to-
tal number of vertices on the fair side. Below, we
propose two extended models of SSFBC and BSFBC,
namely, Proportion Single-Side Fair BiClique (PSSFBC) and
Proportion Bi-Side Fair BiClique (PBSFBC), to further guar-
antee the fairness by introducing a fairness radio threshold θ.

Definition 5: (Proportion single-side fair biclique) Given an
attributed bipartite graph G(U, V,E,A), three integers α, β, δ,
and a float θ, a biclique C(U, V,E,A) of G is a propor-
tion single-side fair biclique if (1) |C(U)| ≥ α; (2) ∀aVi ∈
A(V ), |C(V )aV

i
| ≥ β and ∀aVi , aVj ∈ A(V ), ||C(V )aV

i
| −

|C(V )aV
j
|| ≤ δ; (3) ∀aVi ∈ A(V ), |C(V )aV

i
|/|C(V )| ≥ θ; (4)

there is no biclique C ′ ⊃ C satisfying (1), (2) and (3).
Definition 6: (Proportion bi-side fair biclique) Given an

attributed bipartite graph G(U, V,E,A), three integers α, β, δ,
and a float θ, a biclique C(U, V,E,A) of G is a proportion bi-
side fair biclique if (1) ∀aUi ∈ A(U), |C(U)aU

i
| ≥ α and

∀aUi , aUj ∈ A(U), ||C(U)aU
i
| − |C(U)aU

j
|| ≤ δ; (2) ∀aVi ∈

A(V ), |C(V )aV
i
| ≥ β and ∀aVi , aVj ∈ A(V ), ||C(V )aV

i
| −

|C(V )aV
j
|| ≤ δ; (3) ∀aVi ∈ A(V ), |C(V )aV

i
|/|C(V )| ≥ θ,

∀aUi ∈ A(U), |C(U)aU
i
|/|C(U)| ≥ θ; (4) there is no biclique

C ′ ⊃ C satisfying (1), (2) and (3).
Problem statement. Given an attributed bipartite graph
G(U, V,E,A), three integers α, β, δ, and a float θ, our goal is
to find all SSFBCs, PSSFBCs, BSFBCs, PBSFBCs in G.
Hardness. We first discuss the hardness of the single-
side fair biclique enumeration problem. Considering a special
case: α = 0, β = 0, δ = n, where n is the graph size. Clearly,
with these parameters, the single-side fair biclique enumera-
tion problem degenerates to the traditional maximal biclique
enumeration problem, which is NP-hard. Thus, finding all
single-side fair bicliques is also an NP-hard problem. The bi-
side fair biclique enumeration problem is more challenging
than enumerating all single-side fair bicliques because the
number of bi-side fair bicliques is often much larger than
that of single-side fair bicliques. By definition, we can see
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(a) The example graph G (b) The Ḡ pruned by FCore (c) The 2-hop graph H (d) The colored H

(e) The ego colorful 2-core H̄ (f) The Ḡ pruned by H̄ (g) The Ḡ pruned by FCore (h) The Ḡ pruned by CFCore

Fig. 1. The pruning process of FCore and CFCore on the example graph G.

that a bi-side fair biclique is always contained in a single-
side fair biclique. On the contrary, a single-side fair biclique is
not necessarily a bi-side fair biclique.

Compared to the traditional biclique enumeration problem,
the fairness-aware biclique enumeration problem is harder.
First, both single-side fair biclique and bi-side fair biclique-
models do not satisfy the hereditary property. That is, sub-
graphs of a SSFBC or BSFBC are not always fair subgraphs
due to the attribute constraint. As a result, it is more difficult
to check the maximally for both single-side fair biclique and
bi-side fair biclique. Second, the number of fairness-aware
bicliques is generally larger than that of traditional maximal
bicliques, resulting in a higher time cost to enumerate all
fairness-aware bicliques. For example, on IMDB, with the
parameters α = 8, β = 10, δ = 2, the number of maxi-
mal bicliques and single-side fair bicliques are 12,614 and
3,502,746, respectively. In the case of α = 4, β = 6, δ = 2,
we can find 42,023 maximal bicliques and 11,091,721 bi-
side fair bicliques.

Below, we analyze the lower bounds of time complexity
for finding all SSFBCs and BSFBCs. We first introduce an
important theorem which is proved in [23].

Theorem 2.1: Every bipartite graph with n vertices contains
at most 2n/2 bicliques [23].

In the worst case, all bicliques can satisfy the α and β
constraints of Definition 3, and thus we only consider the
parameter delta. Given a biclique C(U, V,E,A), without loss
of generality, we assume that |C(V )aV

1
| = |C(V )aV

2
|+n1 and

|C(U)aU
1
| = |C(U)aU

2
|+ n2 hold, where n1 > δ and n2 > δ.

Then, the number of SSFBCs is
(|C(V )

aV
2
+δ|

|C(V )
aV
1
|

)
, whose maxi-

mum value is
(⌊C(V )

aV
1
/2⌋

|C(V )
aV
1
|

)
. Similarly, the maximum number

of BSFBCs is equal to
(⌊C(V )

aV
1
/2⌋

|C(V )
aV
1
|

)(⌊C(U)
aU
1
/2⌋

|C(U)
aU
1
|

)
. Since there

are 2n/2 bicliques (Theorem 2.1) and C(V ), C(u) ≤ n holds,
finding all SSFBCs and BSFBCs take at least O(C

⌊n/2⌋
n ∗2n/2)

and O(C
⌊n/2⌋
n )2 ∗ 2n/2) time respectively as algorithms need

to output these fair bicliques.
For enumerating all PSSFBCs and PBSFBCs, the lower

bound of time complexity can be easily derived by analogous
methods of finding SSFBCs and BSFBCs, we omit the analysis
due to the space limit.

III. SINGLE-SIDE FAIR BICLIQUE ENUMERATION

In this section, we first introduce two non-trivial prun-
ing techniques, called fair α-β core pruning and colorful
fair α-β core pruning, to reduce the scale of a graph.
Then, two branch-and-bound enumeration algorithms, called

FairBCEM and FairBCEM++, are proposed to enumer-
ate all single-side fair bicliques. Finally, we develop the
FairBCEMPro++ algorithm to solve the PSSFBC enumeration
problem.
A. Fair α-β core pruning

Below, we first give the definition of attribute degree which
is important to derive the fair α-β core pruning technique.

Definition 7: (Attribute degree) Given an attributed bipartite
graph G = (U, V,E,A) and an attribute value ai ∈ A(U) ∪
A(V ). The attribute degree of vertex u, denoted by Dai(u,G),
is the number of vertices of u’s neighbors whose attribute value
is ai, i.e., Dai(u,G) = |{v|v ∈ N(u), v.val = ai}|.

Definition 8: (Fair α-β core) Given an attributed bipartite
graph G = (U, V,E,A), a subgraph H = (L,R,E,A) is a
fair α-β core if (1) Dai(u,H) ≥ β, u ∈ L, ai ∈ A(V ); (2)
D(v,H) ≥ α, v ∈ R; (3) there is no subgraph H ′ ⊃ H that
satisfies (1) and (2) in G.

With Definition 8, we have the following lemma. Due to
the space limit, all the proofs in this paper are omitted.

Lemma 1: Given an attributed bipartite graph G =
(U, V,E,A) and two integers α, β, any single-side fair bi-
clique must be contained in a fair α-β core.

According to Lemma 1, we propose a fair α-β core compu-
tation algorithm, namely, FCore, to prune unpromising vertices
that definitely do not belong to any single-side fair biclique.
The pseudo-code of FCore is outlined in Algorithm 1, which
is a variant of the classic core decomposition algorithm [2],
[19]. Specifically, a priority queue Q is used to maintain the
vertices which will be removed during the peeling procedure
(line 1). FCore first calculates the attribute degrees and degrees
for vertices in the upper side and lower side, respectively, to
initialize Q (lines 2-10). Based on Definition 8, for a vertex
u ∈ U (i.e., the upper side), FCore removes u from G once
its minimum attribute degree Dmin(u) is less than β; and for
v ∈ V , (i.e., the lower side), it removes v from G once its
degree D(v) is less than α. After that, the algorithm computes
the fair α-β core of G by iteratively peeling vertices from the
remaining graph based on their degrees and attribute degrees
(lines 11-24). Finally, FCore returns the remaining graph Ĝ
as the fair α-β core. It is easy to show that FCore consumes
O(E + V ) time using O(U ×AV

n + V ) space.
B. Colorful fair α-β core pruning

The fair α-β core pruning may not be very effective as it
only employs the constraint of attribute degree and ignores the
property of cliques. To this end, we present a more powerful
pruning technique, called Colorful Fair α-β core (CFCore)
pruning, by establishing an interesting connection between our
problem and the weak fair clique model proposed in [21].

Recall that by Definition 3, in a single-side fair biclique C,
any two vertices in C(V ) share at least α common neighbors.
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Algorithm 1: FCore
Input: G = (U, V,E,A), two integers α, β
Output: The fair α-β core Ĝ

1 Let Q be a priority queue; Q ← ∅;
2 for u ∈ U do
3 for v ∈ N(u) do Dv.val(u)++;
4 Dmin(u)← min{D

aV
i
(u)|aV

i ∈ A(V )};

5 for u ∈ U do
6 if Dmin(u) < β then Q.push(u); Remove u from G;

7 for v ∈ V do
8 for u ∈ N(v) do D(v)++;

9 for v ∈ V do
10 if D(v) < α then Q.push(v); Remove v from G;

11 while Q ̸= ∅ do
12 u← Q.pop();
13 for v ∈ N(u) do
14 if v is not removed then
15 if v ∈ U then
16 Du.val(v)--;
17 Dmin(v)← min{D

aV
i
(v)|aV

i ∈ A(V )};
18 if Dmin(v) < β then
19 Q.push(v); Remove v from G;

20 if v ∈ V then
21 D(v)--;
22 if D(v) < α then
23 Q.push(v); Remove v from G;

24 Q.push(v); Remove v from G;

25 Ĝ← the remaining graph of G;
26 return Ĝ;

Thus, we can construct a 2-hop graph H(V,E,A) on the fair
side of G as follows. We keep the vertices of H as those in the
lower side of G, i.e., H(V ) = G(V ) and A = AV . Given two
vertices vi, vj ∈ V (H), if the number of common neighbors
of vi and vj in G is no less than α, we connect vi and vj in H
as vi and vj may appear in the same single-side fair biclique.
With the 2-hop graph H , we have the following observation.

Observation 1: Given an attributed bipartite graph G and its
2-hop graph H . For an arbitrary single-side fair biclique C, the
vertices in C(V ) form a clique Ĉ in H in which the number
of vertices whose attribute value equals aVi is no less than β.

With Observation 1, the clique Ĉ satisfies the fairness
restriction of the weak fair clique model in [21]. As a weak
fair clique is maximal, Ĉ must be contained in a weak fair
clique. Thus, we can apply the colorful core pruning technique
proposed in [21] to prune unpromising vertices in H that
cannot form a weak fair clique. However, the colorful core
pruning in [21] does not consider the attribute value of the
vertex itself. Below, we give the variants of colorful degree
and colorful core, called ego colorful degree and ego colorful
core by incorporating the vertex attribute.

Definition 9: (Ego colorful degree) Given an attributed graph
G = (V,E,A) and an attribute value ai ∈ A. The ego colorful
degree of vertex u, denoted by EDai

(u,G), is the number of
colors of u and u’s neighbors whose attribute value is ai, i.e.,
EDai

(u,G) = |{color(v)|v ∈ N(u) ∪ {u}, v.val = ai}|.
In Definition 9, the color of each node can be obtained

by the classic greedy graph coloring algorithm [14], which
ensures that two adjacent nodes have different colors. Let
EDmin(u,G) denotes the minimum ego colorful degree of a
vertex u, i.e., EDmin(u,G) = min{EDai

(u,G)|ai ∈ A}. We
omit the symbol G in EDai

(u,G) and EDmin(u,G) when
the context is clear.

Definition 10: (Ego colorful k-core) Given an attributed
graph G = (V,E,A) and an integer k, a subgraph H =
(VH , EH , A) of G is an ego colorful k-core if: (1) for each
vertex u ∈ VH , EDmin(u,H) ≥ k; (2) there is no subgraph
H ′ that satisfies (1) and H ′ ⊃ H .

Based on Definition 10, we have the following lemma.

Algorithm 2: CFCore
Input: G = (U, V,E,A), two integers α, β
Output: The pruned graph Ĝ

1 Ḡ(U, V,E,A)← FCore(G,α, β);
2 Let Q be a priority queue; Q ← ∅;
3 H(V,E,AV )← Construct2HopGraph(Ḡ, α,G(V ));
4 for u ∈ H(V ) do
5 if D(u,H) < AV

n × β − 1 then Removeu from H;

6 Color all vertices in H by invoking a degree based greedy coloring algorithm;
7 for u ∈ H(V ) do
8 for v ∈ N(u) ∪ {u} do
9 if Mu(v.val, color(v)) = 0 then EDv.val(u)++;

10 Mu(v.val, color(v))++;

11 EDmin(u)← min{ED
aV
i
(u)|aV

i ∈ A(V )};

12 for u ∈ H(V ) do
13 if EDmin(u) < β then Q.push(u); Removeu from H;

14 while Q ̸= ∅ do
15 u← Q.pop();
16 for v ∈ N(u,H) do
17 if v is not removed then
18 Mv(u.val, color(u))--;
19 if Mv(u.val, color(u)) ≤ 0 then
20 EDu.val(v)← EDu.val(v)− 1;
21 EDmin(v)← min{ED

aV
i
(v)|aV

i ∈ A(V )};
22 if EDmin(v) < β then
23 Q.push(v); Remove vfrom H;

24 The ego colorful β-core H̄ ← the remaining graph ofH;
25 for u ∈ Ḡ(V )− H̄(V ) do
26 Remove u from Ḡ(V );

27 Ĝ← FCore(Ḡ = (U, V,E,A), α, β);
28 return Ĝ;

Lemma 2: Given an attributed bipartite graphG, its 2-hop
graph H , and the parameters α, β, δ. For an arbitrary single-
side fair biclique C, the vertices in C(V ) must be contained
in the ego colorful β-core of H .

With Lemma 2, we can construct a 2-hop graphH based
on the fair side V and prune the vertices inG(V ) that cannot
form a single-side fair biclique by calculating the ego colorful
β-core of H . Obviously, the scale of ego colorfulβ-core is
smaller than that of H . That means that some vertices in the
lower side can be removed from G, and thus we can further
apply the FCore to prune the vertices in both the upper side
and lower side of G. Based on this idea, we propose a colorful
fair α-β core pruning algorithm, namely,CFCore, as shown
in Algorithm 2. The CFCore algorithm works as follows. It
first performs FCore (Algorithm 1) to calculate the fairα-β
core Ḡ according to Lemma 1 (line 1). TheCFCore algorithm
then constructs a 2-hop graph H on the fair (lower) side
G(V ) (Algorithm 3), and deletes the vertices whose degree
is less than AV

n × β − 1 as such vertices clearly cannot form
a single-side fair biclique (lines 3-5). After that,CFCore uses
the greedy coloring for H which colors vertices based on the
order of degree [2], [19], and computes the ego colorfulβ-core
H̄ by iteratively peeling vertices from the remaining graph
based on their ego colorful degrees (lines 6-24). According
to Lemma 2, the CFCore safely removes the vertices that
are not contained in the ego colorfulβ-core H̄ from Ḡ. It
further performs FCore (Algorithm 1) again to reduce the
vertices for both the upper side and lower side of̄G (lines
25-27). Finally, CFCore returns the pruned graphĜ which
contains all single-side fair bicliques. Algorithm 2 consumes
O(E + V +

∑
u∈U d(u,G)2 +

∑
v∈V d(v,G)2) time using

O(V ×AV
n × color) space.

Example 2: Consider the bipartite graphG = (U, V,E,A)
in Fig. 1(a). Suppose that we set α = 2, β = 2. The CFCore
first performs FCore to calculate fair α-β core denoted by Ḡ as
shown in Fig. 1(b). Then it constructs 2-hop graphH for the
fair side V of Ḡ (i.e., the vertices in circle), which is illustrated
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Algorithm 3: Construct2HopGraph
Input: G = (U, V,E,A), a integer α, the fair side V
Output: The 2-hop graph H based on the fair side V

1 Let H = (V = G(V ), E = ∅, A = AV ) be an attributed graph;
2 for v ∈ G(V ) do
3 Initialize an array C with C[i] = 0, 1 ≤ i ≤ |G(V )|;
4 for u ∈ N(v,G) do
5 for w ∈ N(u,G) do
6 if w ̸= v then C[w]← C[w] + 1;

7 for u ∈ G(V ) do
8 if C[u] ≥ α and u < v then E(H)← E(H) ∪ (u, v);

9 return H;

in Fig. 1(c). The vertex v3 in Fig. 1(c) with two neighbors
cannot form a single-side fair biclique, and we remove it from
H . This is because a single-side fair biclique C contains at
least AV

n ×β vertices in the lower side V , which requires that
the vertices in V (C) should have at least AV

n ×β−1 = 2×2−
1 = 3 neighbors in the 2-hop graph H . Analogously, vertex v8
in Fig. 1(c) is not included in a single-side fair biclique and we
also remove v8 from H . After the degree pruning, we color H
using a greedy coloring algorithm [14] as shown Fig. 1(d), and
computes the ego colorful 2-core H̄ . Taking v1 as an example,
we derive the ego colorful degrees of v1, i.e., EDa(v1, H) = 4
and EDb(v1, H) = 1. Further, we have EDmin(v1, H) = 1 ≤
β = 2. Thus, v1 can be safely removed, since it is not in the
ego colorful 2-core and also not in a single-side fair biclique by
Lemma 2. Fig. 1(e) shows the ego colorful 2-core H̄ . We use
H̄ to prune the bipartite graph Ḡ. The remaining graph is
illustrated in Fig. 1(f). Clearly, in the lower side, the pruned
Ḡ only has 5 vertices while the previous Ḡ in Fig. 1(b) has
9 vertices. Further, CFCore performs FCore again to remove
the vertices in Ḡ as depicted in Fig. 1(g) and Fig. 1(h). The
final graph pruned by CFCore is shown in Fig. 1(h), which is
significantly small than the original graph in Fig. 1(a). □

C. The FairBCEM algorithm
Before introducing the FairBCEM algorithm, we first give

two important definitions, i.e., fair set and maximal fair subset.
Definition 11: (Fair set) Given an attributed set S with at-

tribute values in A and two integers k, δ, we call S is a fair set
if (1) ∀ai ∈ A, |Sai

| ≥ k; (2) ∀ai, aj ∈ A, ||Sai
| − |Saj

|| ≤ δ.
Definition 12: (Maximal fair subset) Given an attributed set

S with attribute values in A and two integers k, δ, Ŝ ⊆ S is
a maximal fair subset if (1) Ŝ is a fair set based on k, δ; (2)
there is no fair set S̄ ⊂ S satisfying Ŝ ⊂ S̄.

Here we propose an efficient algorithm to identify whether
a set Ŝ is the maximal fair subset of the set S as shown
in Algorithm 4. Clearly, Ŝ is a maximal fair subset when it
satisfies there is no subset of S − {Ŝ} could be added into Ŝ
without harming its fairness.

Equipped with CFCore pruning techniques, we propose the
FairBCEM algorithm which enumerates all single-side fair bi-
cliques based on a branch and bound search method. In
FairBCEM, there are four important sets: L,R, P,Q which
control the generation of the search tree. Specifically, we use
R to denote the currently-found vertices in the lower side V
which may be extended to a single-side fair biclique. L is
the vertex set in the upper side U in which every vertex is a
neighbor of all vertices in R. P is the candidate set in V that
can be used to extend R in the search tree. Q is the set of
vertices in which every vertex can be used to expand R but
has already been visited in previous search paths. Below, we
give some observations to explain our FairBCEM algorithm.

Observation 2: If ∀aVi ∈ A(V ), we can find that at least one
vertex v ∈ Q with v.val = aVi satisfying ∀u ∈ L, (u, v) ∈ E,
R is not a maximal and thus we can end the current search
and all deeper searches.

Algorithm 4: MFSCheck

Input: The sets S, Ŝ, the set of attribute values A, two integers k, δ
Output: true: Ŝ is a maximal fair subset; false: Ŝ is not a maximal fair subset

1 if ∃ai ∈ A, Ŝai
< k then return false;

2 C ← S − Ŝ;
3 if ∀ai ∈ A, |Cai

| > 0 then return false;
4 for ai ∈ A do
5 if |Cai

| > 0 then
6 if ∃u ∈ Cai

, Ŝ ∪ {u} is a fair set then return false;

7 return true;

Observation 3: Given a fair set R, if there is no vertex
set S ⊆ P ∪ Q which is fully connected to L and could be
added into R without breaking the fairness, then (L,R) is a
single-side fair biclique.

Observation 4: If all nodes in P are fully connected to R,
and R∪P is a fair set, then we can add all vertices in P into
R without losing solution.

Observation 5: If |L| < α or ∃aVi ∈ A(V ), |RaV
i
|+|PaV

i
| <

β, we can terminate the current search branch.
Based on above observations, the FairBCEM algorithm for

single-side fair biclique enumeration is outlined in Algorithm
5. It first employs the CFCore pruning to remove vertices
that cannot be in a single-side fair biclique and initializes
four sets L,R, P,Q, and then invokes the BackTrackFBCEM
procedure to find all single-side fair bicliques with the branch-
and-bound technique. In BackTrackFBCEM, each vertex x in
P is used to extend the current-found R. With the adding
of x, L must be updated to keep out those vertices that are
not adjacent to x, as each vertex in L is a neighbor of all
vertices in R (lines 7-8). A variable flag, initialized as true,
indicates that whether there is a single-side fair biclique in
the current branch. We denote QFC and PFC the vertices in
Q and P that are fully connected to L respectively, which
are used to check the maximality of R. Clearly, if |L′| < α,
we cannot find a single-side fair biclique because it violates
the restriction on the number of vertices in the upper side in
Definition 3, and thus we set flag to false (line 9). Then, the
BackTrackFBCEM procedure identifies whether R is maximal
with the set Q based on Observation 2 and maintains the value
of flag and the set Q′ (lines 10-15). Once flag equals false,
there is no single-side fair biclique in the current branch and
we move x from P to Q to indicate that x has been searched
(lines 29-30). Otherwise, the BackTrackFBCEM computes
the sets P ′ and PFC with the candidate set P (lines 17-
20). If P ′ = PFC , all vertices in P are fully connected
to R′ and we can directly check if (L′, R′ ∪ PFC) is a
single-side fair biclique according to Observation 4. If so,
BackTrackFBCEM adds the biclique (L′, R′ ∪ PFC) into
the result set Res and updates P ′ and PFC as empty sets
(lines 21-23). After that, the procedure identifies whether R′

is a maximal fair set of R′ ∪ PFC ∪ QFC by Algorithm 4
and adds (L′, R′) into Res by Observation 3 (lines 24-26).
Subsequently, If P ′ ̸= ∅ and ∀aVi ∈ A(V ), |R′

aV
i
|+|P ′

aV
i
| ≥ β,

BackTrackFBCEM performs the next backtracking with the
new L′, R′, P ′, Q′ (lines 27-28). The final set Res maintains
all single-side fair bicliques in G (line 4).
Correctness analysis. Clearly, we enumerate all possible R
based on the sets P,Q and all single-side fair bicliques lie in
the enumeration tree, thus the completeness of our algorithm
is satisfied. The fairness and maximality of a biclique are
satisfied at line 22 and line 25 of Algorithm 5. Besides, the
set Q can guarantee that each single-side fair biclique only
be enumerated once, thus our algorithm also satisfy the non-
redundancy property. In conclusion, our FairBCEM algorithm
can correctly output all single-side fair bicliques.
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Algorithm 5: FairBCEM
Input: A bipartite graph G = (U, V,E,A), three integers α, β, δ
Output: The set of all single-side fair bicliques Res

1 Ĝ = (Û, V̂ , Ê, A)← CFCore(G,α, β);
2 L← Û ; R← ∅; P ← V̂ ; Q← ∅;
3 BackTrackFBCEM(L,R, P,Q);
4 return Res;
5 Procedure BackTrackFBCEM(L,R, P,Q)
6 while P ̸= ∅ do
7 x← a vertex in P ; flag ← true;
8 R′ ← R ∪ {x}; L′ ← {u ∈ L|(u, x) ∈ Ê};
9 if |L′| < α then flag ← false;

10 for u ∈ Q do
11 N(u) = {v ∈ L′|(u, v) ∈ Ê};
12 if |N(u)| = |L′| then QFC ← QFC ∪ {u};
13 if |N(u)| ≥ α then Q′ ← Q′ ∪ {u};

14 if ∀aV
i ∈ A(V ), QFC

aV
i

> 0 then
15 flag ← false;

16 if flag then
17 for v ∈ P, v ̸= x do
18 N(v) = {u ∈ L′|(u, v) ∈ Ê};
19 if |N(v)| = |L′| then PFC ← PFC ∪ {v};
20 if |N(v)| ≥ α then P ′ ← P ′ ∪ {v};

21 if PFC = P ′ then
22 if (L′, R′ ∪ PFC) is a fair one-side biclique then
23 R′ ← R′ ∪ PFC ; PFC ← ∅;P ′ ← ∅;

24 if R′ is a fair set then
25 if R′ is maximal fair subset of R′ ∪ PFC ∪QFC then
26 Res← Res ∪ (L′, R′);

27 if P ′ ̸= ∅ and ∀aV
i ∈ A(V ), |R′

aV
i
|+ |P ′

aV
i
| ≥ β then

28 BackTrackFBCEM(L′, R′, P ′, Q′);

29 P ← P − {x};
30 Q← Q ∪ {x};

D. The FairBCEM++ algorithm
The FairBCEM algorithm may suffer from large search

space due to enormous single-side fair bicliques. To further
improve the efficiency, we propose a new algorithm, called
FairBCEM++, which first enumerates all maximal bicliques
and then uses a combinatorial enumeration technique to find
all single-side fair bicliques in the set of all maximal bicliques.
Our algorithm is based on the key observation that any single-
side fair biclique must be contained in a biclique.

More specifically, FairBCEM++ first find all maximal bi-
cliques satisfying |L| ≥ α and RaV

i
≥ β,∀aVi ∈ A(V ),

and then enumerates all single-side fair bicliques among them.
The pseudo-code of FairBCEM++ is depicted in Algorithm 6.
Similar to FairBCEM, FairBCEM++ uses the CFCore prun-
ing to remove unpromising vertices and then performs the
BackTrackFBCEM++ procedure to find all single-side fair bi-
cliques (lines 1-3). In each iteration of BackTrackFBCEM++,
we find all maximal bicliques based on the idea of the
MBEA++ algorithm [41] which adds a set of vertices (i.e.,
the set C) into R once. Specifically, it first extends R by
adding x and obtain the set L′ in which vertices are linked
to x (lines 7-8). Then, it determines whether (L′, R′) is a
maximal biclique by trying to add each vertex u in Q to
the current biclique. Clearly, if not, we can terminate the
current search as any single-side fair biclique must be in
a biclique (lines 10-13). Otherwise, we move the vertices
connected to all vertices in L′ from P to R′ once and update
the sets C and P ′ (lines 16-22). We consider two cases
for (L′, R′): (1) R′ is a fair set then (L′, R′) is a single-
side fair biclique (lines 23-24); (2) R′ is not a fair set then
we calculate all maximal fair subsets of R′ to further enu-
merate single-side fair bicliques (lines 25-28). The maximal
fair subsets can be obtained by a combinatorial enumeration
method as illustrated in Algorithm 7. Let r′ ∈ R′ be a maximal
fair subset of R′. If N(r′) equals L, we obtain a single-

Algorithm 6: FairBCEM++
Input: A bipartite graph G = (U, V,E,A), three integers α, β, δ
Output: The set of all single-side fair bicliques Res

1 Ĝ = (Û, V̂ , Ê, A)← CFCore(G,α, β);
2 L← Û ; R← ∅; P ← V̂ ; Q← ∅;
3 BackTrackFBCEM++(L,R, P,Q);
4 return Res;
5 Procedure BackTrackFBCEM++(L,R, P,Q)
6 while P ̸= ∅ do
7 x← a vertex in P ; flag ← true;
8 R′ ← R ∪ {x}; L′ ← {u ∈ L|(u, x) ∈ Ê};
9 if |L′| < α then flag ← false;

10 for u ∈ Q do
11 N(u) = {v ∈ L′|(u, v) ∈ Ê};
12 if |N(u)| = |L′| then flag ← false; break;
13 if |N(u)| > 0 then Q′ ← Q′ ∪ {u};
14 C ← C ∪ {u};
15 if flag then
16 for v ∈ P, v ̸= x do
17 N(v) = {u ∈ L′|(u, v) ∈ Ê};
18 if |N(v)| = |L′| then
19 R′ ← R′ ∪ {v};
20 N lap(v) = {u|u ∈ L/L′, (u, v) ∈ Ê};
21 if |N lap(v)| = 0 then C ← C ∪ {v};
22 if |N(v)| ≥ α then P ′ ← P ′ ∪ {v};
23 if (L′, R′) is a single-side fair biclique then
24 Res← Res ∪ (L′, R′);
25 else
26 R′ ← Combination(R′, A(V ), β, δ);
27 for r′ ∈ R′ do
28 if N(r′) = L then Res← Res ∪ (L′, r′);

29 if P ′ ̸= ∅ and ∀aV
i ∈ A(V ), |R′

aV
i
|+ |P ′

aV
i
| ≥ β then

30 BackTrackFBCEM++(L′, R′, P ′, Q′);

31 P = P − C;
32 Q = Q ∪ C;

Algorithm 7: Combination
Input: A set S, the set of attribute value A, two integers k, δ
Output: The set of all combinations CanSet

1 if ∃ai ∈ A,Sai
< k then

2 return ∅;
3 msize = minai∈A Sai

;
4 for ai ∈ A do
5 csize = min(Sai

,msize + δ);
6 Res(ai)← all subsets of Sai

that with size equals csize;

7 CanSet← Res(a0);
8 for ai ∈ A, i ̸= 0 do
9 CanSet = CanSet×Res(ai);

10 return CanSet;

side fair bicliqueand the BackTrackFBCEM++ procedure adds
(L′, r′) into the result set Res (line 28). Similar to FairBCEM,
BackTrackFBCEM++ invokes the next backtracking procedure
if P ′ ̸= ∅ and ∀aVi ∈ A(V ), |R′

aV
i
|+|P ′

aV
i
| ≥ β hold (lines 29-

30). Finally, the set Res maintains all single-side fair bicliques
in G (line 4).
Correctness analysis. The bicliques with |L| ≥ α, |Rai

| ≥ β
are enumerated due to the correctness of MBEA++ [41]. For
any maximal biclique B(L,R′), the algorithm enumerates all
single-side fair bicliques in B. Since every single-side fair bi-
clique is contained in a maximal bilcique, FairBCEM++ satis-
fies completeness. In line 26, we find all maximal fair subsets
of R′ by the Combination algorithm and identify whether
they form a biclique with L. Thus, the fairness constraint
is satisfied. As L is shrinking during the search process, the
maximality is also met due to the line 28. Meanwhile, each
single-side fair biclique B′(L,R′)’s L is the L of a maximal
biclique B(L,R′) and every maximal biclique has different L,
thus every single-side fair biclique only be enumerated in one
maximal biclique, which avoids repeated enumeration.
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Extending to finding all PSSFBCs. We propose an algorithm,
called FairBCEMPro++, to enumerate all PSSFBCs by slightly
modifying FairBCEM++ (Algorithm 6). Specifically, in line
23 of Algorithm 6, FairBCEMPro++ replaces the inspection
for a single-side fair biclique with the inspection for a propor-
tion single-side fair biclique which can be easily implemented.
Additionally, in line 26 of Algorithm 6, we use a different
algorithm, called CombinationPro, instead of Combination, to
enumerate proportion single-side fair bicliques. The workflow
of CombinationPro is similar to that of Combination, and
the difference is that CombinationPro calculates csize by
min(Sai

,msize+ δ,msize ∗ (1−θ)
θ ) (line 5 in Algorithm 7).

The third item comes from the proportion constraint which can
be easily derived by the inequality msize

msize+csize ≥ θ. Due to the
space limit, we omit the pseudo-codes of FairBCEMPro++ and
CombinationPro.

IV. BI-SIDE FAIR BICLIQUE ENUMERATION

This section first revises the pruning techniques for solv-
ing the single-side fair biclique enumeration problem to fit
into our bi-side fair biclique enumeration problem. Then,
we propose an algorithm, called BFairBCEM, by extending
FairBCEM to enumerate all fair bi-side fair bicliques. Simi-
larly, we also propose an algorithm called BFairBCEM++ by
extending the FairBCEM++ algorithm. Finally, we present the
BFairBCEMPro++ algorithm to solve PBSFBC enumeration
problem by adapting the BFairBCEM++ algorithm.

A. The pruning techniques
In single-side fair biclique enumeration, we derive two

pruning techniques by considering the attribute degrees of
vertices on the fair side (i.e., the lower side V ). In the bi-
side fair biclique model, the attribute constraint is expanded
to both the upper side and lower side, thus a natural idea is to
employ the attribute degrees of vertices in U and V to design
the pruning methods. Below, we give two pruning techniques,
namely, BFCore and BCFCore, which are variants of FCore
and CFCore, respectively.
Bi-fair α-β core pruning (BFCore). Similar to FCore, we
introduce the concept of bi-fair α-β core as Definition 13 and
derive the Lemma 3 to prune vertices in both U and V that
are definitely not in any bi-side fair biclique.

Definition 13: (Bi-fair α-β core) Given an attributed bipar-
tite graph G = (U, V,E,A), a subgraph H = (L,R,E,A) is a
bi-fair α-β core if (1) Dai(u,H) ≥ β, u ∈ L, ai ∈ A(V ); (2)
Dai

(v,H) ≥ α, v ∈ R, ai ∈ A(U); (3) there is no subgraph
H ′ ⊃ H that satisfies (1) and (2) in G.

Lemma 3: Given an attributed bipartite graph G =
(U, V,E,A) and two integers α, β, any bi-side fair bi-
clique must be contained in a bi-fair α-β core.

With Lemma 3, a question is how to calculate the bi-fair α-
β core of a bipartite graph G. We devise a peeling algorithm,
called BFCore, by slightly modifying FCore (Algorithm 1),
as Definition 13 is also a variant of the classic k-core [2],
[19]. Specifically, for each vertex v in V , BFCore calculates
the attribute degree DaU

i
(v) instead of the degree D(v) (lines

2-6). When a vertex u is removed, the algorithm updates the
attribute degrees for its neighbors and maintains the priority
queue Q. If a neighbor v is in the lower side V , BFCore
calculates the new attribute degree DaU

i
(v) as it is in the upper

side U (lines 16-19). The other steps of BFCore are similar to
those of FCore and thus we omit the pseudo-code of BFCore.
Bi-colorful fair α-β core pruning (BCFCore). In CFCore,
we construct the 2-hop graph on the fair side V by adding
an edge for two vertices with at least α common neigh-
bors (i.e., the condition (1) in Definition 3). While the bi-
side fair biclique model considers the fairness on both U and
V . Thus, when building the 2-hop graph on V , we only add
an edge for two vertices if they share at least α common
neighbors for each attribute value aUi ∈ A(U) (i.e., the
condition (1) in Definition 4). Here, we revise the 2-hop graph

Algorithm 8: BiConstruct2HopGraph
Input: G = (U, V,E,A), a integer α, the fair side V
Output: The 2-hop graph H based on the fair side V

1 Let H = (V = G(V ), E = ∅, A = AV ) be an attributed graph;
2 for v ∈ G(V ) do
3 C is an array with C[i][j] = 0, 1 ≤ i ≤ |G(V )|, 1 ≤ j ≤ |A(U)|;
4 for u ∈ N(v,G) do
5 for w ∈ N(u,G) do
6 if w ̸= v then C[w][w.val]← C[w][w.val] + 1;

7 for u ∈ G(V ) do
8 if ∀aU

i ∈ A(U), C[u][aU
i ] ≥ α and u < v then

9 E(H)← E(H) ∪ (u, v);

10 return H;

Algorithm 9: BFairBCEM
Input: A bipartite graph G = (U, V,E,A), three integers α, β, δ
Output: The set of all bi-side fair bicliques Res

1 Ĝ = (Û, V̂ , Ê, A)← BCFCore(G,α, β);
2 L← Û ; R← ∅; P ← V̂ ; Q← ∅;
3 Enumerate all single-side fair bicliques by FairBCEM(Ĝ, α, β, δ);
4 for each single-side fair biclique B(L′, R′) do
5 L′ ← Combination(L′, A(U), α, δ);
6 for l′ ∈ L′ do
7 if R′ is a maximal fair subset of N(l′) then
8 Res← Res ∪ (l′, R′);

9 return Res;

algorithm to fit the bi-side fair biclique enumeration problem,
which is outlined in Algorithm 8. In the graph constructed by
BiConstruct2HopGraph, we can still calculate the ego colorful
β-core to prune the unpromising vertices in V .

In addition, the bi-side fair biclique model also requires
fairness on the upper side U , and thus we can prune the ver-
tices in U like handling the lower side V . Based on this idea,
we propose the BCFCore algorithm which is similar to FCore
and we only make the following minor changes. In particular,
for the lower side V , BCFCore constructs the 2-hop graph by
BiConstruct2HopGraph instead of Construct2HopGraph (line
3 in Algorithm 2), and computes the ego colorful β-core to
prune the vertices in V . And for the upper side U , BCFCore
again builds the 2-hop graph by BiConstruct2HopGraph with
parameters (G, β, U), and calculates the ego colorful α-core
to prune the unpromising vertices in U . Due to the space
limitation, we omit the pseudo-code of BCFCore.

B. The BFairBCEM algorithm
Before introducing our BFairBCEM algorithm, we first give

the following observation.
Observation 6: A bi-side fair biclique must be contained in

single-side fair bicliques.
With Observation 6, we present the BFairBCEM algo-

rithm as shown in Algorithm 9. We first search all single-
side fair bicliques and then enumerate all bi-side fair bicliques
by combination of the upper side. Specifically, BFairBCEM
invokes FairBCEM to search all single-side fair bicliques (line
3). Given a single-side fair biclique B(L′, R′), it satisfies
the fairness restriction on the lower side, and we enumerate
all maximal fair subsets of L′ in the upper side to ensure
fairness by the Combination algorithm (line 5). For a maximal
fair subset of l′ in L′, the BFairBCEM algorithm determines
whether R′ is a maximal subset of N(l′) (line 7). Clearly,
if yes, (l′, R′) is a bi-side fair biclique and we add it into
Res. As all bi-side fair bicliques are contained in all single-
side fair bicliques based on Observation 6. The BFairBCEM
algorithm correctly returns all bi-side fair bicliques.
Correctness analysis. All single-side fair bicliques are cor-
rectly enumerated by FairBCEM and any bi-side fair bi-
clique must be included in a single-side fair biclique, so
the completeness is satisfied. The maximality is met by the
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line 7 of Algorithm 9, since l′ is a maximal fair subset
of N(R) and R′ is a maximal fair subset of N(l′), which
also verifies the fairness restriction. For non-redundancy, it
is obviously that any bi-side fair biclique enumerated in a
single-side fair biclique has the same R′, and there is no two
different single-side fair bicliques has the same R, thus any
bi-side fair biclique is enumerated once.

C. The BFairBCEM++ algorithm
Based on Observation 6, we can also invoke the

FairBCEM++ algorithm to search all single-side fair bi-
cliques and then enumerate all bi-side fair bicliques by
the combinatoral enumeration method. Hence, we propose
the BFairBCEM++ algorithm which can be easily de-
vised by slightly modifying Algorithm 9. That is, we use
FairBCEM++ instead of FairBCEM in line 3 to find all single-
side fair bicliques. Due to the space limitation, we omit the
pseudo-code of BFairBCEM++.
Extending to finding all PBSFBCs. We can slightly adapt
the BFairBCEM++ algorithm to solve PBSFBC enumeration
problem, which is called BFairBCEMPro++. That is, we re-
place Combination with CombinationPro (line 5 in Algorithm
9), and use the inspection for a PBSFBC instead of that for
a BSFBC (lines 3-4 in Algorithm 9). It is worth noting that
we also need to check whether the ratio constraint is satisfied
for maximal fair subset checking (line 7 in Algorithm 9). We
omit the details of BFairBCEMPro++ due to the space limit.

V. EXPERIMENTS
A. Experimental setup

For single-side fair biclique enumeration problem, we im-
plement FairBCEM (Algorithm 5) and FairBCEM++ (Algo-
rithm 6) equipped with the pruning techniques FCore (Al-
gorithm 1) and CFCore (Algorithm 2). To enumerate all
bi-side fair bicliques, the BFairBCEM (Algorithm 9) and
BFairBCEM++ are implemented armed with the BFCore and
BCFCore pruning techniques. For comparison, we implement
two naive search algorithms, i.e., NSF and BNSF, to find all
SSFBCs and BSFBCs, which reserve the pruning techniques
such as Algorithm 1 and Algorithm 2 and drop off all pruning
techniques in the search process such as Observation 2, Ob-
servation 4 and Observation 5. We also implement the above
enumeration algorithms with two different vertex selection
orderings, i.e., DegOrd and IDOrd, which are obtained by
sorting the vertices based on a non-increasing manner of their
degrees and IDs respectively. All algorithms are implemented
in C++. We conduct all experiments on a PC with a 2.10GHz
Inter Xeon CPU and 256GB memory. We set the time limit
for all algorithms to 24 hours, and use the symbol “INF” to
denote that the algorithm cannot terminate within 24 hours.
Datasets. We evaluate the efficiency of the proposed algo-
rithms in five real-world graphs. Specifically, Wiki-catis a fea-
ture network. Youtube, IMDB are affiliation networks, Twitter
is an interaction network and DBLP is an authorship network.
All datasets can be downloaded from http://konect.cc/. Note
that all these datasets are non-attributed bipartite graphs, thus
we randomly assign an attribute to each vertex to generate
attributed graphs for evaluating the efficiency of all algorithms.
Parameters. There are four parameters in our algorithms: α,
β, δ and θ. α and β are used to restrict the size of fair bicliques.
If α and β are too small, we will obtain too many small
bicliques which are not meaningful. When α and β are too
large, most of the vertices will be pruned during the pruning
processing and the remaining graph will miss much structural
information, resulting in few bicliques being outputted. We
carefully fine-tune them to extract meaningful fair bicliques
based on the biclique numbers in real-life datasets. δ represents
the maximum difference between the number of vertices of
every attribute. With δ increases, the fairness between different
attributes in vertex set decreases. Therefore, δ should not
be set to be too large or the problem will degenerate to
the maximal biclique enumeration problem. The parameter
θ is the fairness ratio threshold and we can easily derive

TABLE I
DATASETS AND PARAMETERS

Dataset |U | |V | |E| Density α∗s β∗s α∗b β∗b δ∗ θ∗

Youtube 94, 238 30, 087 293, 360 1.0× 10−4 8 8 5 5 2 0.4
Twitter 175, 214 530, 418 1, 890, 661 2.0× 10−5 8 8 6 7 2 0.4
IMDB 303, 617 896, 302 3, 782, 463 1.4× 10−5 10 10 6 6 2 0.4

Wiki-cat 1, 853, 493 182, 947 3, 795, 796 1.1× 10−5 7 7 6 6 2 0.4
DBLP 1, 953, 085 5, 624, 219 12, 282, 059 1.1× 10−6 7 7 4 4 2 0.4

Note: α∗s, β∗s and α∗b, β∗b are the default values of α, β for SSFBC (PSSFBC)
and BSFBC (PBSFBC) models respectively, δ∗, θ∗ are the default values of δ and θ.

that θ is no larger than 0.5. Thus, θ also should not be
set to be too large. Since different datasets have various
scales, the parameter α and β is set within different integers.
For SSFBC (PSSFBC) and BSFBC (PBSFBC) enumeration
problems, we also set parameters within different integers.
The detailed parameter settings can be found on the website
https://github.com/Heisenberg-Yin/fairnesss-biclique.

B. Efficiency testing
Exp-1: Evaluation of the pruning techniques. For single-
side fair biclique enumeration problem, both FairBCEM and
FairBCEM++ algorithms can use FCore and CFCore to prune
unpromising nodes. For bi-side fair biclique enumeration
problem, the pruning techniques BFCore and BCFCore can
reduce the graph size in BFairBCEM and BFairBCEM++.
In this experiment, we evaluate these pruning techniques by
comparing the number of remaining vertices after pruning
and the consuming time with varying α and β. Fig. 3 and
Fig. 4 illustrate the results for single-side fair biclique and
bi-side fair biclique enumeration on IMDB, respectively. The
results on the other datasets are consistent. Fig. 3 (a)-(b)
show that both FCore and CFCore can significantly reduce the
number of vertices compared to the original graph as expected.
Moreover, the number of remaining vertices decreases with
larger α or β. In general, CFCore outperforms FCore in terms
of the pruning performance, especially for relatively small α
or β values. As shown in Fig. 3 (c)-(d), the running time of
FCore and CFCore decreases as α or β increases and CFCore
takes more time than FCore to prune unpromising vertices.
This is because CFCore performs FCore first and further
reduces the graph by ego fair α-β core pruning in 2-hop graph
(Algorithm 2). For example, in Fig. 3(a) with α = 8, FCore
reduces the number of vertices from 9,266,649 to 12,507;
and CFCore further reduces the number of vertices to 1,318.
When β equals 8, the number of remaining vertices after
FCore and CFCore are 13,757 and 1,490 respectively as shown
in Fig. 3(b). As a result, the CFCore pruning can achieve
superior pruning effect over the FCore with slightly time
consuming. Besides, similar results can also be found in Fig. 4
for bi-side fair biclique enumeration. To sum up, the above
experimental results validate the effectiveness and efficiency of
the FCore, CFCore, BFCore and BCFCore pruning techniques.
Exp-2: Evaluation of SSFBC enumeration algorithms. Here
we evaluate FairBCEM and FairBCEM++ algorithms equipped
with descending DegOrd by varying α, β and δ. The results
are depicted in Fig. 2. As expected, the runtime of FairBCEM
and FairBCEM++ decreases with increasing α, β, δ on all
datasets. This is because for a large α, β, many vertices can
be pruned by the FCore and CFCore pruning techniques and
the search space can also be correspondingly reduced during
the branch and bound procedure. For a large δ, the number
of single-side fair bicliques decreases with increasing δ due
to the maximality constraint, thus resulting in a trend of
decreasing time. Moreover, we can also see that the runtime
of FairBCEM++ is at least two orders of magnitude lower
than that of FairBCEM within all parameter settings over
all datasets. For instance, when α = 10 with default β and
δ, FairBCEM consumes 29,192 seconds to find all single-
side fair bicliques on IMDB, while FairBCEM++ takes only
91 seconds to output the results, which is almost three orders
of magnitude faster than the FairBCEM algorithm. These
results validate the efficiency of the proposed FairBCEM and
FairBCEM++ algorithms.
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Fig. 2. The running time of the NSF, FairBCEM and FairBCEM++ algorithms in different datasets.
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Fig. 3. The pruning time and remaining nodes of FCore and CFCore.
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Fig. 4. The pruning time and remaining nodes of BFCore and BCFCore.

In FairBCEM and FairBCEM++ algorithms, a vertex is
selected from the candidate set to the current biclique for
performing a backtracking search procedure. Since the search
spaces with various orderings are significantly different, we
also evaluate the two algorithms with IDOrd and DegOrd
orderings. Table.II depicts the runtime of FairBCEM and
FairBCEM++ equipped with IDOrd and DegOrd in the case
of default α, β, δ over all datasets. As shown in Table.II, the
FairBCEM with DegOrd is significantly faster than that with
IDOrd. For example, in IMDB, the FairBCEM algorithms with
IDOrd and DegOrd consume 4,378 seconds and 2,098 seconds
to output all single-side fair bicliques. Clearly, the latter is al-
most 2 times faster than the former. Similar results can also be

TABLE II
THE RUNTIME OF DIFFERENT ALGORITHMS WITH IDOrd AND DegOrd.

Algorithm (s) Ordering IMDB Youtube Twitter Wiki-cat DBLP

FairBCEM IDOrd 7,022.7 157.1 854.2 90.6 6.3
DegOrd 1,612.9 43.6 611.8 45.9 2.6

FairBCEM++ IDOrd 78.6 16.1 72.5 13.2 0.6
DegOrd 61.9 8.3 65.1 12.4 0.5

BFairBCEM IDOrd 174.2 2.3 76.8 0.9 1.5
DegOrd 68.1 1.4 69.1 0.4 1.1

BFairBCEM++ IDOrd 19.8 7.4 63.8 0.3 0.7
DegOrd 17.2 1.7 59.7 0.2 0.6

found for FairBCEM++ algorithms with IDOrd and DegOrd.
Again, the FairBCEM++ algorithm outperforms FairBCEM on
all datasets, which is consistent with our previous founding.
The results indicate that the DegOrd ordering is more efficient
that the IDOrd ordering during the search procedure.

In addition, We compare NSF with the proposed
FairBCEM and FairBCEM++ on all datasets. We only show
the results on DBLP in Fig. 2 as NSF runs out of time
on other datasets with most parameter settings. As can be
seen, FairBCEM is at least two orders of magnitude faster
than NSF. These results confirm that our proposed algorithms
significantly outperform the NSF algorithm.
Exp-3: Evaluation of BSFBC enumeration algorithms. We
evaluate the runtime of BFairBCEM and BFairBCEM++ with
DegOrd by varying α, β, δ. The results are depicted in
Fig. 5. As expected, the runtime of BFairBCEM and
BFairBCEM++ decreases as α, β, δ increases, which is similar
to that of single-side fair biclique enumeration algorithms.
Moreover, we also observe that the BFairBCEM++ algo-
rithm is almost 3-100 times faster than the BFairBCEM
algorithm within all parameter settings on all datasets. For
example, when β = 7 with default α and δ, the runtime
of BFairBCEM and BFairBCEM++ take 17 seconds and 1
second to output all bi-side fair bicliques on Youtube, respec-
tively. Obviously, the former is significantly faster than the
latter. These results validate the efficiency of the proposed
BFairBCEM and BFairBCEM++ algorithms.

In addition, we compare the running time of BFairBCEM
and BFairBCEM++ algorithms armed with IDOrd and DegOrd
under default α, β, δ. As seen in Table.II, the BFairBCEM with
DegOrd significantly outperforms IDOrd by a large margin.
For example, in IMDB, the BFairBCEM algorithm with IDOrd
takes 253 seconds to find all bi-side fair bicliques, while
the algorithm with DegOrd only needs 169 seconds. Similar
results can also be found for BFairBCEM++ algorithms with
IDOrd and DegOrd. Again, the BFairBCEM++ algorithm
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Fig. 5. The running time of the BNSF, BFairBCEM and BFairBCEM++ algorithms on different datasets.
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Fig. 6. The numbers of the maximal bicliques, SSFBCs and BSFBCs.

is faster than BFairBCEM over all datasets. These results
also demonstrate the efficiency of DegOrd ordering which is
consistent with our previous findings.

Besides, we also evaluate the running time of BNSF with
BFairBCEM++ and BFairBCEM++ on all datasets. We show
the results on DBLP in Fig. 5 as NSF cannot terminate with
limited time on other datasets under parameter settings. We
can see that BFairBCEM is at least two orders of magnitude
faster than BNSF. These results confirm that our algorithms
are significantly faster than the algorithm.
Exp-4: The number of SSFBCs and BSFBCs. Fig. 6 reports
the number of single-side fair bicliques and bi-side fair bi-
cliques with varying α, β, δ on Wiki-cat. Note that we find the
maximal biclique B(L,R) satisfying |L| ≥ α and |R| ≥ 2×β
for comparison with single-side fair biclique. To compare with
bi-side fair biclique, we search the maximal biclique B(L,R)
with |L| ≥ 2×α and |R| ≥ 2×β. Clearly, there are significant
numbers of single-side fair bicliques and bi-side fair bicliques
on Wiki-cat. For example, in the case of α = 6, β = 6, δ = 2
for single-side fair biclique enumeration problem, there are
9,548 maximal bicliques, 346,411 single-side fair bicliques.
As the case of α = 3, β = 6, δ = 2 for bi-side fair biclique
enumeration problem, there are 546,411 bi-side fair bicliques,
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Fig. 7. The scalability of the proposed algorithms.
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Fig. 8. The memory overhead.

and 9,548 maximal biclique. In general, the number of single-
side fair bicliques and bi-side fair bicliques is larger than
that of maximal bicliques. This finding is consistent with our
analysis in Section II, because any single-side fair biclique or
bi-side fair biclique must be included in a maximal biclique.
Additionally, we can see that the number of maximal bicliques,
single-side fair bicliques and bi-side fair bicliques decreases
as α, β, δ increases. This is because with a larger α/β/δ,
the fairness constraint and size constraint become stricter for
single-side fair biclique/single-side fair biclique models and
maximal biclique model respectively.
Exp-5: Scalability testing. Here we evaluate the scalability
of the proposed algorithms. To this end, we generate four
subgraphs for each dataset by randomly picking 20%-80%
of the edges, and evaluate the runtime of the algorithms
for single-side fair biclique enumeration and bi-side fair bi-
clique enumeration. Fig. 7 illustrates the results on DBLP
and the results on the other datasets are similar. For the
SSFBC enumeration algorithms, as show in Fig. 7(a), the
runtime of FairBCEM increases smoothly as the graph size
increases. while the runtime of FairBCEM++ keeps relatively
stable with different values of m. Again, FairBCEM++ is
at least 10 times faster than FairBCEM with all parameter
settings, which is consistent with our previous findings. For the
SSFBC enumeration algorithms, as can be seen from Fig. 7(b),
the runtime of BFairBCEM++ increases more smoothly w.r.t.
the graph size than that of BFairBCEM. These results demon-
strate the high scalability of the proposed algorithms.
Exp-6: Memory overhead. Fig. 8 shows the memory over-
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(a) DBDA, SSFBC, (α = 3, β = 3, δ = 2) (b) DBDA, BSFBC,
(α = 1, β = 2, δ = 2)

(c) DBDS, SSFBC,
(α = 2, β = 2, δ = 2)

(d) DBDS, BSFBC,
(α = 1, β = 2, δ = 2)

Fig. 9. Case studies on DBDA and DBDS.

(a) Jobs, the CF algorithm (b) Jobs, SSFBC,
(α = 2, β = 2, δ = 1)

(c) Movies, the CF algorithm (d) Movies, the CF algorithm (e) Movies, SSFBC,
(α = 2, β = 2, δ = 1)

Fig. 10. Case studies on Jobs and Movies.
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Fig. 11. The number of PSSFBCs and PBSFBCs.
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Fig. 12. The running time of FairBCEMPro++ and BFairBCEMPro++.

heads of the enumeration algorithms on all datasets. Note
that the memory costs of different algorithms do not include
the size of the graph. From Fig. 8, we can see that the
memory usages of FairBCEM and FairBCEM++ are almost
equal and are always larger than the original graph size. This
is because they both perform the CFCore pruning technique
and enumerate single-side fair bicliques following a depth-first
manner, thus the space overhead mainly depends on the data
structures in CFCore. These results are consistent with our
analysis in Section III-C. Similar results can also be found for
BFairBCEM and BFairBCEM++ algorithms.
Exp-7: Evaluation of PSSFBC and BSFBC enumera-
tion algorithms. Here we evaluate the FairBCEMPro++ and
BFairBCEMPro++ algorithms by varying the additional pa-
rameter θ. Fig. 11 and Fig. 12 illustrate the number
of PSSFBCs and PBSFBCs and the running time of
FairBCEMPro++ and BFairBCEMPro++ on Youtube. The
results on the other datasets are similar. As can be seen, the
number of proportion fair bicliques and the runtime increase
with the increasing θ. When θ = 0.5, the PSSFBC enumera-
tion problem degenerates to the SSFBC enumeration problem
with δ = 0. Therefore, solving the PSSFBC enumeration
problem takes a similar time as the SSFBC enumeration
problem. The case is also similar to the PBSFBC enumeration
problem. When θ approaches 0.5, more bicliques satisfy the
definitions of proportion fair bicliques, thus the number of
PSSFBCs and PBSFBCs increases, and the running time of
algorithms also increases.

C. Case study
Case study on DBLP. We conduct a case study on a collab-
oration network DBLP to show the effectiveness of our algo-
rithms. The DBLP dataset is downloaded from dblp.uni-trier.
de/xml/. We construct a bipartite graph on DBLP by defining
two type nodes, that is, the papers are on the upper side and

the scholars are on the lower side. When a scholar is an author
of a paper, there is an edge between them. Based on DBLP,
We further construct two attributed bipartite subgraphs: DBDA
and DBDS as follows. For DBDA, we keep the scholars that
have published at least one paper on the database (DB), and
artificial intelligence (AI) related conferences. Each scholar
has an attribute AV with A(V ) = {S, J} where S represents
a senior scholar and J indicates a junior scholar. We assign the
attribute value for a scholar v by identifying whether he/she
has published papers for over 10 years. If yes, we set v.val
to S otherwise the v.val is J . Every paper is associated with
an attribute AU with A(U) = {DB,AI} to indicate that this
paper is published in DB and AI related conferences. For
DBDS, we only remain the scholars that have published at
least one paper on the database (DB), and system (SY S)
related conferences. Each scholar also has an attribute AV
with A(V ) = {S, J} and We assign the attribute value for
scholars by the method for DBDA. Each paper has an attribute
AU with A(U) = {DB,SY S} to indicate that this paper is
published in DB and SY S related conferences. Finally, the
DBDA has 260,605 papers and 240,420 scholars with 781,378
edges, i.e., |U | = 240, 420 and |V | = 260, 605. And the DBDS
contains 163,545 papers and 139,703 scholars with 433,928
edges, i.e., |U | = 163, 545 and |V | = 139, 703. We perform
FairBCEM++ and BFairBCEM++ algorithms to find all single-
side fair bicliques and bi-side fair bicliques.

As examples, Fig. 9 (a)-(b) and Fig. 9 (c)-(d) show one
single-side fair biclique and one bi-side fair biclique on DBDA
and DBDS respectively. We do not illustrate the title of
papers since the title is too long. In Fig. 9(a), we can see
that there are five senior scholars and three junior scholars,
which is clearly a single-side fair biclique of DBDA with
α = 3, β = 3, δ = 2. From their homepages, all scholars
in Fig. 9(a) are interested in database-related areas, which
is consistent with the attributes of papers they connected.
The senior authors, such as Michael Stonebraker and Samuel
Madden are indeed well-known scholars in the field of the
database. This result indicates that our FairBCEM++ can find
single-side fair bicliques which guarantee the fairness of one
side in real-world applications. The bipartite in 9(b) is a bi-
side fair bicliquewhich contains two senior scholars and two
junior scholars in the lower side and one AI paper [40]
and one DB paper [20] in the upper side. Moreover, the
professors Christopher Ré and Jude W. Shavlik are databases
and artificial intelligence scientists, and Ce Zhang is rela-
tively young compared with the former two scholars who
are students of Christopher Ré. This result confirms that the
proposed BFairBCEM++ indeed can find bi-side fair bicliques
to ensure the fairness of two sides in real-world graphs. Similar
results can also be found on DBDS. Fig. 9(c) depicts a single-
side fair biclique with five senior scholars and three junior
scholars. In Fig. 9(d), there are two senior scholars and two
junior scholars who have co-authored one DB paper [36]
published in SIGMOD and one SY S paper [12] published in
OSDI. Among all scholars, the professors Michael Frankin and
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Ion Stoica are also well-known in data science and distributed
systems areas. These results demonstrate the effectiveness of
single-side fair biclique and bi-side fair biclique models and
our proposed algorithms.
Case study on Jobs. We use a job recommenda-
tion dataset Jobs to conduct a case study which can
be downloaded from https://www.kaggle.com/competitions/
job-recommendation. The dataset consists of 7 windows, and
we consider window 1 for simplicity as each window is
independent. We construct a bipartite graph G by defining
two type nodes, i.e., the user on the upper side and the job
on the lower side. The attribute of jobs is popularity, which
is set based on the number of applications for this position.
In order to avoid cold start problem, we only reserve the top-
1000 jobs with the highest number of applications and assign
the top-500 jobs as more popular jobs (the attribute is P )
and the others as less popular jobs (the attribute is U ). We
also assign each user an attribute value A or F to represent
he/she is American or foreigner. Therefore, the bipartite graph
G contains 63,412 users and 1,000 jobs with AV = {P,U}
and AU = {A,F}. We use the Collaborative Filtering (CF)
algorithm to calculate recommendation results which is shown
in Fig. 10(a). In Fig. 10(a), there is an edge between a user and
a job if the job lies in the top-5 recommendation jobs with the
CF algorithm. From the information of Jobs, we can find that
user 21,994 comes from India and has a master’s degree with
9 years of work experience, and user 76,027 is a Canadian
and has a master’s degree with 23 years of work experience.
Clearly, the two foreigners have similar education and work
experience, but all the jobs recommended for them are less
popular jobs. To eliminate the biases, we construct a bipartite
graph G′ in which each edge represents that the job has the
top-10 highest recommendation score computed by CF, i.e, G
contains 63,412 users, 1,000 jobs and 63,4120 edges. Then we
perform FairBCEM++ to find SSFBCs by setting the jobs as
the fair side. A SSFBC containing user 21,994 and user 76,027
is depicted in Fig. 10(b). As expected, both more popular jobs
and less popular jobs are recommended to the two foreigners.
These results demonstrate the effectiveness of our fair biclique
models and proposed algorithms.
Case study on Movies. We also conduct a case study
on a movie recommendation dataset Movies which can be
downloaded from https://www.kaggle.com/code/rounakbanik/
movie-recommender-systems. We construct a bipartite graph
including the user on the upper side and the movies on the
lower side. For each movie, we assign its attribute to O to
represent an old movie which is published before 1990, and
otherwise, its attribute is set to N to indicate a new movie.
The bipartite graph consists of 9,000 movies and 700 users,
i.e., |U | = 700 and |V | = 9, 000. The recommendation result
by the traditional CF algorithm is shown in Fig. 10(c) and
Fig. 10(d), an edge means that a movie lies in the top-5
recommendation answers for a user. As can be seen, for two
users of similar interests, all five movies in Fig. 10(c) and
Fig. 10(d) are old movies. The CF algorithm suffers from
explosion bias, that is, already popular movies will get more
chance to be recommended and relatively new movies get
less recommendation chance even if they are of comparable
quality, which is generally called cold start problem. To solve
this problem, We connect each user with top-10 movies ac-
cording to the personalized recommendation scores computed
by CF and invoke FairBCEM++ to find SSFBCs. A SSFBC
containing user 310 and user 512 is shown in Fig. 10(e).
By introducing fairness into the movie recommendation task,
the new recommended movie “X-men” is more desirable and
famous compared with old movies. This result indicates that
fair biclique models can relieve the problem of explosion bias.

VI. RELATED WORK

Cohesive bipartite subgraph mining. Our work is related
to cohesive subgraph mining in bipartite graphs which has
attracted much attention in recent years. For example, Zhang
et al. [41] proposed a branch and bound algorithm, i.e.,

MBEA, to search all maximal bicliques. To accelerate the
search efficiency, Abidi et al. [1] further presented a pivoting
enumeration algorithm called PMBE which is based on the
Containment Directed Acyclic Graph (CDAG). Yang et al.
[38] investigated the problem of (p, q)-clique counting and
proposed BCList and BCList++ algorithm which applies a
layer-based exploring strategy and cost model to accelerate
the searching process. Lyu et al. [15] presented a new al-
gorithm to search maximum bi-clique which can be used to
process bipartite graphs of billion scale. Wang et al. [33]
developed a novel index structure to help finding the (α, β)-
community which is a minimum edge weight (α, β)-core.
Wang et al. [32] proposed a vertex-priority-based paradigm
BFC-VP to accelerate butterfly counting by a large margin. All
the algorithms mentioned above do not consider the fairness
of cohesive subgraphs and they are mainly tailored to non-
attributed bipartite graphs. To the best of our knowledge, the
definition of fairness-aware biclique is proposed for the first
time, and also our work is the first to study the problem of
finding fairness-aware biclique in bipartite graphs.
Fairness-aware data mining. Our work is inspired by a
concept called fairness which has been widely studied in
machine learning communities. Verma et al. [27] proposed
many concepts to better measure fairness. Zehlike et al. [39]
presented a method to generate a ranking with guaranteed
group fairness, which can ensure the proportion of protected
elements in the rank is no less than a given threshold. Serbos
et al. [26] investigated a problem of fairness in the package-
to-group recommendation, and propose a greedy algorithm
to find approximate solutions. Beutel et al. [3] also studied
the fairness in recommendation systems and presented a set
of metrics to evaluate algorithmic fairness. Another line of
research on fairness is studied in classification tasks. Some
notable works include demographic parity [11] and equality
of opportunity [13]. For instance, Hardt et al. [13] proposed
a framework that can optimally adjust any learned predictor
to reduce bias. Our definition of fairness which requires the
equality of different attribute values in a group is different from
those in the above studies in the machine learning literature. In
the field of data mining, Pan et al. [21] introduced the fairness
into clique model and proposed several algorithms to find fair
cliques. Unlike their work, we focus on studying the fairness-
aware biclique enumeration problem on bipartite graphs, and
our techniques are significantly different from their techniques.

VII. CONCLUSION
In this paper, we study the problem of enumerating fairness-

aware bi-cliques in bipartite graphs. We propose a single-
side fair biclique model and a bi-side fair biclique model to
introduce fairness to bipartite graphs. To enumerate all single-
side fair bicliques, we first present the FCore and CFCore prun-
ing techniques to prune unpromising vertices, and then develop
a branch and bound algorithm FairBCEM to enumerate all
single-side fair bicliques in the pruned graph. To improve the
efficiency, we present the FairBCEM++ algorithm to search
all single-side fair bicliques by using maximal cliques as
candidates to reduce search space. For the bi-side fair bi-
clique enumeration problem, we also propose BFCore and
BCFCore pruning techniques and develop the BFairBCEM
algorithm with a branch and bound technique. The improved
algorithm, i.e., BFairBCEM++, is also presented to find all bi-
side fair bicliques. We also consider the ratio of the number of
vertices of each attribute to the total number of vertices and
propose the proportion single-side fair biclique and propor-
tion bi-side fair biclique models and enumeration algorithms.
We conduct extensive experiments using five large real-life
graphs, and the results demonstrate the efficiency, effective-
ness, and scalability of the proposed solutions.
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